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Abstract This study quantifies the characteristics of different satellite sampling errors in the time series
of total precipitable water (TPW) derived from Constellation System for Meteorology, Ionosphere, and
Climate (COSMIC) radio occultation, Special Sensor Microwave Imager Sounder (SSMIS), and
High‐resolution Infrared Radiation Sounder (HIRS) during the overlapping time period of January 2007 to
December 2013. Gap‐free data from ERA5 reanalysis of the European Centre for Medium Range Weather
Forecasts are used as reference values. All TPW data are first compared with microwave radiometer
measurements from Atmospheric Radiation Measurement Program. In general, they are consistent, with all
their regression coefficients being greater than 0.77. Discrepancies in global TPW time series can be
mainly attributed to the inherent sampling errors of these three different satellite remote sensing systems.
COSMIC has small sampling errors in higher latitudes. But it has scarce samples in tropical regions, which
leads to a large sampling error of 3.00 mm in the estimation of global TPW. Sampling in SSMIS is more
uniform with mean errors less than 0.5 mm. But the sampling is only over the ocean. Sampling errors in
HIRS are larger in tropics and north subtropical areas due to clear sky biased sampling. Moreover, it is
significantly correlated with the variability of TPW, whereas the sampling error in COSMIC is less
influenced by TPW. Sampling errors will be reduced and more consistent global TPW time series will be
derived by simply combining the multisensor samplings together.

1. Introduction

In recent decades, meteorological satellites are playing an important role in weather forecasting and climate
monitoring (Kelly, 1997; Menzel et al., 1998, 2018; Purdom & Menzel, 1996). They are widely recognized as
an efficient tool for monitoring and tracking water vapor changes (Ferraro et al., 2005; Ho et al., 2007; Huang
et al., 2013; John & Soden, 2007; Stephens et al., 1993; Trenberth et al., 2005). The changes of global water
vapor are critical for understanding the associated precipitation, cloud radiative effects, and global warming
(Soden et al., 2002; Soden & Held, 2006; Wagner et al., 2006). In addition, changes in water vapor also influ-
ence the energy budget of the Earth through the large amount of latent heat (Bosilovich et al., 2011; Marks
et al., 2008).

In the past years, the passivemicrowave instruments, for example, the Special SensorMicrowave Imager, the
Special SensorMicrowave Imager Sounder (SSMIS), and the infrared satellite sensors, for example, the High‐
Resolution Infrared Radiation Sounder (HIRS), the Atmospheric Infrared Sounder (AIRS) are often utilized
to monitor global total precipitable water vapor (TPW) changes (Chen & Liu, 2016; Iacono et al., 2003;
Kawanishi et al., 2003; Mears et al., 2011; Mears, Smith, & Wentz, 2015; Mears, Wang, et al., 2015; Shi &
Bates, 2011; Wentz, 1997). The TPW, also known as integrated water vapor (IWV), is a quantitative measure-
ment of water vapor in the atmosphere. The variation of monthly mean TPW is often used for model evalua-
tion and climate study (Ho et al., 2012; van de Berg et al., 1991). Recently, new active global positioning
system radio occultation (GPS RO) measurements have emerged and are more widely used in water vapor
researches (Anthes et al., 2000, 2008; Ho et al., 2007, 2010; Kursinski &Hajj, 2001). In these studies, TPWpro-
ducts from single remote sensing technique is usually validated against ground‐based observations, atmo-
spheric reanalysis, or another satellite data. They are then used to analyze the water vapor changes in
different regions and different time periods. Since the satellite observations were well validated by other
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independent data sets, the climate studies using these observations might be convincing. However, when
space‐time averages of TPW are calculated, satellite observations will inherently introduce an error in space
and time called sampling error. Some possible reasons are temporal gaps in the observations caused by the
orbit, missing samples in some specificmeteorological conditions due to the limitation of sensing techniques.

Different satellite measurements have different inherent sampling patterns, and each has its own character-
istics. For instance, the infrared sensors can provide high‐quality profiles but are always limited to clear sky
conditions (Allan et al., 2003; Erlick & Ramaswamy, 2003; Sohn et al., 2006). While microwave imagers can
provide data under cloudy conditions, they can only retrieve accurate data over ocean due to the complexity
of land surface emissivity. And for the GPS‐RO data, although it has all weather observations both over land
and ocean, its horizontal resolution is very coarse, which is about 200 km (Ho et al., 2017; Teng et al., 2013).
Actually, no single sensing technique can completely provide homogeneous data products across the whole
globe and under all weather conditions with high frequency and accuracy (Ho et al., 2017; Ho & Peng, 2018).
Therefore, the inherent sampling error of satellite data is inevitable in global study. However, it has not yet
been adequately clarified.

Previous studies have found the importance of sampling errors in satellite data. Mears et al. (2018) indicated
that there are several uncertainties in satellite TPWdata like systematic errors in retrieval algorithm, random
errors in observations, intersatellite calibration uncertainties and spatial‐temporal sampling biases, and so
on. However, when constructing the long‐term variation in TPW, the random errors and systematic errors
do not contribute substantially and can be ignored in most cases, whereas the sampling errors and possible
uncertainty in intersatellite calibration will influence the determination of long‐term TPW changes. Other
studies also show that sampling errors may cause the estimates of climate variables to be uncertain. For
example, Ho et al. (2017) validated the accuracy of Constellation System for Meteorology, Ionosphere, and
Climate (COSMIC) data with collocated microwave radiometer measurements. But finally, a much higher
global TPW trend was got with this validated data set. It was higher than previous studies by about a factor
of 4 to 6.When they investigated the results inmore details, they found that the COSMIC data used are highly
biased toward higher latitudes (40–60°N and 40–65°S). So, even though COSMIC data have global coverage,
the trend derived from COSMIC is more of a trend in subtropical area where storm tracks exist rather than a
global one. John et al. (2011) studied the clear‐sky biases in infrared estimates of upper tropospheric humidity
and found that themaximum clear‐sky bias is up to−30% relative humidity over convectively active areas. So
it is important to understand the advantages and limitations of each satellite data record before using them
for climate studies. And it is necessary to figure out how and to what extent different sampling will influence
climate studies to avoid anymisinterpretation and spurious estimation. However, there are not many studies
based on monthly time scales to demonstrate the sampling errors in TPW from different sensors.

Therefore, the objective of this study is to analyze and clarify the sampling errors in monthly mean TPW
time series from different satellite measurements. It should be noted that the purpose of this study is not
to evaluate the overall accuracy of real satellite data but to understand and characterize the sampling errors.
In order to achieve this goal, a subsampling study is conducted, similar to the work described in Mears et al.
(2018). In their study, the error introduced by microwave sampling was analyzed by using the actual sam-
pling pattern for each satellite to subsample 6‐hourly TPW values obtained from the National Center for
Environmental Prediction Global Data Assimilation System final analysis. In this study, the ERA5 reanalysis
data with high spatial and temporal resolutions are used as the reference data set to analyze the character-
istics of sampling errors from three different satellite measurements in the same time period.

This article is organized as follows: section 2 describes the data sets and methods used in this study, section 3
gives the analysis and result of sampling errors in each satellite measurements, section 4 provides the discus-
sion about the potential improvement caused by using multiple samplings, and conclusions are summarized
in section 5.

2. Methodologies and Data
2.1. Methodologies

In this study, sampling errors in microwave imagers from the SSMIS, infrared data from HIRS, and GPS RO
data from COSMIC are investigated simultaneously in the overlapping time period from the year of 2007 to
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2013. As we mentioned above, there are a variety of differences in different remote sensing systems, so it is
difficult to directly compare their sampling. Another data set should be used as a reference which needs to be
relatively accurate with high spatial and temporal resolutions for describing TPW changes. In particular, it
should provide uniform (gap‐free) data coverage. Atmospheric reanalysis data can provide global coverage
and homogeneous long‐term TPW record. Additionally, all major atmospheric reanalysis data sets have
assimilated a variety of observations, such as that from radiosondes, ground‐based GPS, diverse satellites,
buoys, and so on. Nevertheless, reanalysis data are not perfect. There are still some issues like incorrect
physical processing in the numerical weather prediction model, uncertainty in radiative transfer operator
in cloudy skies for assimilation (e.g., Li et al., 2016), misrepresentation of diurnal cycle of variables like
clouds over some regions, and so on. A higher‐resolution reanalysis with more reliable quality called
ERA5 from the European Centre for Medium‐Range Weather Forecasts is now available for use. ERA5
can provide global TPW data at a high temporal resolution of 1 hr and a horizontal spatial resolution
of 30 km (0.25° × 0.25° in grid). ERA5 is superior compared to widely used ERA‐Interim due to more data
sources and new technology in data assimilation system, especially with its higher spatial and temporal
resolution (Zhang et al., 2018). Since it is gap‐free across the whole globe, ERA5 can be adequately col-
located to different satellite sampling patterns in space and time to get the satellite‐sampled data sets
to construct the sampling errors in satellite data.

The ERA5 data were first collocated with COSMIC, SSMIS, and HIRS in time and space. The closest ERA5
data were collected within half an hour of the satellite observations to construct the satellite‐sampled ERA5
data sets. Since the ERA5 can provide TPW with a high resolution, errors introduced from data collocation
are very small (~0.01 mm). Then to quantify the sampling error in TPW from these three different satellite
observations, each satellite‐sampled ERA5 TPW time series was compared with the original reference TPW
time series calculated from all ERA5 data. The difference between satellite‐sampled TPW and reference data
is defined as the sampling error. Selection of the satellites, their orbital configuration, and their scanning pat-
tern all contribute to satellite sampling errors for climate studies (Kirk‐Davidoff et al., 2005). Therefore, with
this definition, satellite swath gaps, observation time differences, and missing data due to some meteorolo-
gical conditions (like heavy rain, full clouds, etc.) together with the factors mentioned above will be
entangled in sampling errors and automatically taken into account.

2.2. Satellite Data Preparation for Sampling Definition
2.2.1. SSMIS Data
SSMIS are satellite passive microwave radiometers carried onboard Defense Meteorological Satellite
Program satellites. Microwave imagers are able to provide long‐term all‐sky time series of water vapor mea-
surements (e.g., Wentz, 2015), but only over ocean owing to the complicated land surface emissivity. In addi-
tion, microwave radiation is significantly affected by heavy rain so the TPW is only retrieved under
conditions of no or light to moderate rain (Elsaesser & Kummerow, 2008; Schluessel & Emery, 1990;
Wentz & Spencer, 1998). In this study, the SSMIS TPW are obtained from the Remote Sensing System ver-
sion 7.0 available at www.remss.com/missions/ssmi, with a resolution of 0.25° × 0.25° grid for daytime
and nighttime (i.e., 1,440 × 720 × 2 per day).
2.2.2. HIRS Data
This study uses the HIRS Moisture Data Record Version 2.5 Release 2 (Borbas et al., 2005; Seemann et al.,
2003, 2008), developed by Space Science and Engineering Center (SSEC) at the University of Wisconsin‐
Madison (UW‐Madison). The data are available at SSEC ftp site (ftp://ftp.ssec.wisc.edu/pub/ICI/HIRS_
TPW_GVAP_delivery_v2.5R2). TPW are determined for clear‐sky radiances measured by HIRS (at 20 km
for HIRS/3 and HIRS/2 and 10 km for HIRS/4 resolution) over both land and ocean for day and night.
The presence of clouds in each HIRS instantaneous field of view (IFOV) is determined by collocated
Advanced Very High Resolution Radiometer cloud mask, and the moisture products are only calculated
when the HIRS IFOV is more than 85% clear. This process will lead to a lot of missing data in cloudy area
(Udelhofen & Hartmann, 1995; van de Berg et al., 1991; Wylie et al., 2005), which will contribute to the sam-
pling error. The long‐term consistent HIRS TPW products are binned into a global map of 0.5° × 0.5° for 4
time periods daily. The HIRS data on board NOAA‐15 (HIRS/3, 2007–2010), NOAA‐17 (HIRS/3, 2007–
2008), Metop‐A (HIRS/4, 2007–2013), and Metop‐B (HIRS/4, 2012–2013) are chosen in this study according
to the data availability.
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2.2.3. COSMIC Data
Unlike passive microwave radiometers and infrared (IR) sensors, GPS RO is capable of using active signals to
derive all‐weather, high‐vertical‐resolution refractivity, temperature, and water vapor profiles in the neutral
atmosphere (Anthes, 2011; Anthes et al., 2008). Based on this principle, satellite‐based COSMIC have been
launched and been in operation since June 2006. Presently, COSMIC provides about 1,800 profiles per day,
with up to 90% of the total of COSMIC RO profiles reaching the lowest 2 km of the troposphere and 73%
reaching the lowest 1 km (Sokolovskiy et al., 2006; Teng et al., 2013). The horizontal resolution of a
COSMIC observation is about 200 km in the lower troposphere. In this study, the COSMIC reprocessed
water vapor profiles are collected from COSMIC Data Analysis and Archive Center (https://cdaac‐www.cos-
mic.ucar.edu/cdaac/products.html). To calculate COSMIC TPW, the specific humidity upward from the
lowest penetration height is integrated and the water vapor amount below the lowest penetration height
is compensated by using a least squares fit (Teng et al., 2013). It is shown that the calculation of TPW will
become more problematic as the lowest penetration height becomes higher. Therefore, to get more available
RO samples under the precondition that the RO profiles can give reasonable TPW, water vapor profiles with
the lowest penetrating height of 1 km are collected to compute TPW (Teng et al., 2013). So available TPW
samples are fewer than that of available water vapor profiles found in COSMIC.

The main data sets that we use to analyze the characteristics of sampling errors in this study are listed in
Table 1. Note that the overlapping time period of the three satellite measurements is chosen, which is from
the year of 2007 to 2013. Since the monthly mean TPW is used to determine the characteristics of sampling
errors, enough samples are still obtained in 7 years.

2.3. Validation of TPW From Satellites and ERA5 Data Using Ground Based Observations

Before using the satellite data and ERA5 reanalysis to construct the global TPW time series, it is important to
verify the accuracy of these TPW records. TPW data used in this study are compared with ground‐based
microwave radiometer (MWR) measurements from the Department of Energy Atmospheric Radiation
Measurement Program (DOE/ARM) sites during the study period. ARM data are available at https://
www.arm.gov/data. The ARM MWR is deployed to improve the water vapor measuring and characterize
capabilities of water vapor measurements. ARM focuses on obtaining continuous TPWmeasurements every
20 s. In this study, three ARM permanent sites are chosen: Tropical Western Pacific site (0.521°S, 166.916°E)
centered at Nauru island, Southern Great Plains site (36.606°N, 97.485°W) near Lamont in Oklahoma, and
North Slope of Alaska site (71.323°N, 156.609°W) near Barrow in Alaska. The three sites are distributed in
different typical latitudinal zones and have been commonly used as important and stable validation sources
for spaceborne TPW measurements (Albert et al., 2005; Ferraro et al., 2005; Grody et al., 2001; Miloshevich
et al., 2006; Revercomb et al., 2003).

SSMIS, HIRS, and ERA5 data within 50 km and COSMIC data within 100 km (because of the coarser resolu-
tion of COSMIC data) of the ARM MWR sites are collected. ARM MWR data within 1 hr of satellite

Table 1
Main Data Used in This Study

Data Source Date Coverage

ERA5 January 2007 to December 2013 from ECMWF All‐sky, global coverage; hourly data with the grid
resolution of 0.25° × 0.25°; observations from
various sources were assimilated

COSMIC January 2007 to December 2013 original water vapor
profiles are from CDAAC

All‐sky conditions; both over land and ocean;
about 200 km in horizontal resolution

SSMIS January 2007 to December 2009 on board DMSP F16
January 2007 to December 2013 on board DMSP F17

All‐sky conditions except very heavy rain;
ocean only; two observations in one day for each satellite
with the grid resolution of 0.25° × 0.25°

HIRS_UWisconsin January 2007 to December 2010 on board NOAA‐15
January 2007 to December 2008 on board NOAA‐17
January 2007 to December 2013 on board Metop‐A
January 2012 to December 2013 on board Metop‐B

Clear‐sky only; both over land and ocean;
two observations in one day for each satellite;
the grid resolution is 0.5° × 0.5°;

Note. ECMWF= European Centre for Medium RangeWeather Forecasts; CDAAC= Constellation Observing System for Meteorology, Ionosphere, and Climate
Data Analysis and Archive Center; DMSP = Defense Meteorological Satellite Program.
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observations and ERA5 reanalysis are averaged to reduce the impact of different spatial scales. Additionally,
to avoid the contamination effect of very heavy rain, we only use those match‐up data where the cloud liquid
water values are less than 0.6 mm. Figure 1 shows that all satellite data are consistent with ARM measure-
ments, and all their linear fitting correlation coefficients are greater than 0.77. The SSMIS data, with 4,448
matches in 7 years, show a mean bias of −0.18 mm with a standard deviation (STD) of 1.79 mm, whereas
larger bias and STD can be found in COSMIC and HIRS data against all three ARM sites. For COSMIC, it
is partly due to very limited match numbers and the coarser spatial resolution. For HIRS, errors can mainly
come from calibration issues and retrieval uncertainties. The retrieval algorithm in ARM MWR is deter-
mined by linear regression over a climatological mean condition, whichmight cause bias for retrievals under
clear sky conditions, whereas the HIRS moisture retrieval algorithm is a statistical regression (Seemann
et al., 2003, 2008) developed from an atmospheric profile database (SeeBor, Borbas et al., 2005) mainly under
clear sky conditions, which might also introduce a bias. In addition, errors from data collocation/matching
also contribute to these differences (e.g., HIRS data within 100 km, instead of 50 km of the ARM sites, will
cause a 0.41 mm dry bias in the mean bias according to our calculations). This also suggests that a reference
data set with higher spatial and temporal resolution along with good data quality should be used to reduce
the error from data collocation/matching in the intercomparisons and validation. The relatively higher cor-
relation between ERA5 TPW and ARM MWR observations can be seen in all three sites, which also proves
that it is a feasible way to use ERA5 as a reference data in this study, although the temporal and spatial vari-
abilities of ERA5 still need to be validated. The comparisons with independent ARM MWR observations
indicate that all three satellite data and ERA5 reanalysis are able to construct reasonable TPW monthly
mean time series.

3. Results and Analysis
3.1. Impact of Sampling Errors on TPW Variation

In this section, we attempt to show that differences in TPW time series can be created simply from inherent
sampling differences of different satellite remote sensing systems. Figure 2 shows the variation of global
monthly mean TPW from real satellite data (Figure 2a) and from satellite‐sampled ERA5 (Figure 2b) with
all ERA5 data or ERA5 ocean data (for comparison with ocean only SSMIS data) as a reference. The monthly
mean TPW is calculated from all available data in the given month. In Figure 2a, TPW from different satel-
lites shows different variabilities and magnitudes. It is hard to get a consistent and reasonable estimation
with these discrepancies. In Figure 2b, we extract the sampling impact by using corresponding satellite‐
sampled ERA5 data. The difference between the satellite‐sampled ERA5 TPW and the reference TPW from
all gap‐free ERA5 data is the sampling error defined in section 2.1 above. As we discussed in section 2.3, in
addition to sampling errors, real satellite data also have observation errors, retrieval errors, etc. However, it
can be seen from Figure 2 that when constructing the long‐term TPW time series, differences among differ-
ent satellite measurements are mostly attributed to their inherent sampling differences. COSMIC‐sampled
TPW has the largest sampling error, which is about 3 mm drier in average than that from the original
ERA5, followed by HIRS, which is 1.3 mm drier in average. In contrast, the sampling error in SSMIS is small
(no more than 1.5 mm) in all months. Note that since the SSMIS data are only over ocean, we only use ERA5
ocean data as reference for comparison with SSMIS‐sampled TPW.

3.2. Distribution of Sampling and Sampling Errors

To find out the causes of these sampling errors in TPW time series, the distributions of sampling and sam-
pling errors in each satellite data set are investigated. Since seasonal changes are not shown in COSMIC
and SSMIS but in HIRS, only 1 month (July 2008) is shown here for COSMIC and SSMIS, but both the
months of July and January are shown for HIRS. The left panel of Figure 3 shows the available sampling
numbers at each grid, and right panel of Figure 3 shows the sampling errors calculated by deducting the
satellite‐sampled ERA5 TPW from the original ERA5 data in the same month.

Figure 3 shows that the COSMIC TPW data used in this study are mainly accumulated to middle to high lati-
tudes (30–60°S/N), and the maximum number of observations in one grid for 1 month is about 25
(Figure 3a). Note that the grid resolution for calculating COSMIC sampling numbers is 2.5° × 2.5°, whereas
that for SSMIS and HIRS is 0.5° × 0.5°. This is due to the coarser horizontal resolution of COSMIC observa-
tions. Actually, COSMIC can provide 1,800 water vapor profiles per day globally. However, when TPW is
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Figure 1. Scatterplots and scatter density plots for total precipitable water (TPW; mm) from real satellite data/ERA5 reanalysis data versus TPW from
three Atmospheric Radiation Measurement (ARM) microwave radiometer sites. Results in Tropical Western Pacific, Southern Great Plains and North Slope of
Alaska site are shown in (a), (b), (e), and (h) (red), (c), (f), and (i) (green), and (d), (g), and (j) (blue) panels, respectively. (a) TPW from Special Sensor Microwave
Imager Sounder (SSMIS) data versus TWP site (ocean only); (b–d) TPW from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)
data versus three sites; (e–g) TPW from High‐resolution Infrared Radiation Sounder (HIRS) data versus three sites; (h–j) TPW from ERA5 reanalysis versus
three ARM sites are shown. Note that the scatter density plot is used for SSMIS, HIRS, and ERA5, whereas scatterplot is used for COSMIC due to limited number of
matches. Satellite data compared here are from January 2007 to December 2013. ERA5 data are only from the year of 2008 due to large number of matches. In
addition, the ranges of color bars are different.
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calculated, only those water vapor profiles penetrating below 1 km are interpolated to ensure the accuracy of
TPW. The interpolated TPW will become problematic when the lowest penetrating height is high since the
water vapor is more concentrated in the lower troposphere. However, in tropical area, the superrefraction in
boundary layer will cause many profiles to fail to reach this low level. Therefore, there will be a lack of data
in tropical regions in COSMIC sampling patterns. Teng et al. (2013) also found that more than 70% of
COSMIC water vapor profiles are below 1 km in middle to high latitudes and only about 10% in the
tropical regions. This limited amount of available data in each grid together with the coarser horizontal
resolution in COSMIC leads to a disordered and discrete distribution of sampling errors in COSMIC data,
as shown in Figure 3b.

The sampling of SSMIS data is shown in Figure 3c. It is nearly uniform over global ocean area, with a range
of 280–460 observations in one 0.5° × 0.5° grid. The small sampling between 30°S and 30°N is clearly shown
in Figure 3c, but the number of observations (larger than 280) in these areas is still enough to sufficiently
represent the monthly mean TPW. Therefore, the sampling errors of SSMIS in Figure 3d are very small, even
in the area where small samples exist. These small samples are due to orbital gaps and very heavy rain in
some tropical areas. By contrast, the sampling patterns and errors for HIRS are quite different. The IR sam-
pling is not homogeneous both over land and ocean. There are more samples in subsidence areas of the
Hadley/Walker circulations around subtropics and less data in Monsoon regions and the Inter Tropical
Convergence Zone (ITCZ) in summer. Some persistent convective areas like some areas near the Bay of
Bengal and south west of Peru even have no data for a whole month. Moreover, seasonal migration of sam-
pling and sampling errors in HIRS is also seen due to the movement of the ITCZ. Actually, the IR sampling is
good only in the dry descending areas where the cloud influence is small. Because HIRS can only provide the
TPW data under clear sky conditions, the drier biases are widely spread and are larger in regions where con-
vections are active and frequent (Figures 3f and 3h).

3.3. Statistical Characteristics of Sampling Errors

From Figure 3, it can be seen that the sampling distribution of satellite has a latitudinal dependence.
Therefore, to further quantify the characteristics of sampling errors in different satellite measurements,
the statistics of sampling errors are analyzed in different latitudinal zones. We choose three areas, which
are north subtropical area (30°N to 60°N), tropical area (30°S to 30°N), and south subtropical area (60°S
to 30°S), as they are the most important regions for water vapor distribution and variation. In addition,
the TPW from polar latitudes are fairly small and the valid satellite samples are also fewer (shown in
Figure 3, left panel). Both bias and root‐mean‐square (RMS) difference are considered to determine the sam-
pling errors (Figure 4).

The left panel of Figure 4 shows the variation of TPW time series in the three different latitudinal zones, and
the right panel of Figure 4 shows the corresponding statistics. The bias and RMS error between the satellite‐

Figure 2. Time series of global monthly mean total precipitable water (TPW; mm) derived from (a) real satellite observations and (b) satellite‐sampled ERA5 rea-
nalysis, together with the original ERA5 data. The black/grey solid lines are the TPW from all ERA5/ERA5 ocean data; the variabilities of TPW from Constellation
Observing System for Meteorology, Ionosphere, and Climate (COSMIC), Special Sensor Microwave Imager Sounder (SSMIS), and High‐resolution Infrared
Radiation Sounder (HIRS) are shown by the solid lines for real satellite data and the dashed lines for satellite‐sampled ERA5 data with colors of blue, green, and
purple, respectively. Note that because SSMIS TPW observations are only over the ocean, the ERA5 ocean data are used as a reference for comparisons with SSMIS.
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sampled ERA5 and the original ERA5 data are also provided in Table 2. For COSMIC data, the discrepancy
in TPW caused by sampling errors mainly exists in tropical area where sampling numbers are small, with an
averaged bias of −1.89 mm and RMS error of 1.96 mm. And TPW from COSMIC sampling has dry biases in

Figure 3. (a, c, e, and g) Total number of observations in each grid for a month for (a) Constellation Observing System for Meteorology, Ionosphere, and
Climate (COSMIC) binned in 2.5° × 2.5° grid box in July 2008, (c) Special Sensor Microwave Imager Sounder (SSMIS) binned in 0.5° × 0.5° in July 2008, and
(e and g) High‐resolution Infrared Radiation Sounder (HIRS) binned in 0.5° × 0.5° in July and January 2008. Note that the ranges of the color bar are different.
(b, d, f, and h) Distribution of sampling errors (mm) in the same month for (b) COSMIC, (d) SSMIS, and (f and h) HIRS at their original resolutions.
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all three latitudinal zones. One possible reason is that the superrefraction in the boundary layer may cause
negative refractivity of RO signal, which leads to bias in retrieved humidity in the lower troposphere. Thus,
the lowest penetration height in COSMIC water vapor profiles will be more often in drier regions than in

Figure 4. (a, c, and e) Total precipitable water (TPW; mm) time series in different latitudinal zones from (a) Constellation
Observing System for Meteorology, Ionosphere, and Climate (COSMIC), (c) Special Sensor Microwave Imager Sounder
(SSMIS), and (e) High‐resolution Infrared Radiation Sounder (HIRS). Solid line is the TPW from the original ERA5
reanalysis and dashed line is the TPW from satellite‐sampled ERA5 data. Latitudes from 60°S to 30°S, 30°S to 30°N,
and 30°N to 60°N are indicated by colors of blue, red and yellow, respectively. (b, d, and f) Statistics (bias and
root‐mean‐square, RMS, error) of sampling errors in corresponding regions for (b) COSMIC, (d) SSMIS, and (f) HIRS. Red
char bar represents RMS error (mm) and blue char bar represents bias (mm).

Table 2
Statistics in Different Regions From Satellite‐Sampled Data

Data COSMIC SSMIS HIRS

Statistics Bias (mm) RMS error (mm) Bias (mm) RMS error (mm) Bias (mm) RMS error (mm)

60°S to 30°S −1.04 1.11 −0.14 0.20 −0.64 0.79
30°S to 30°N −1.89 1.96 −0.04 0.26 −5.07 5.12
30° to 60°N −0.74 0.78 0.30 0.35 −2.79 2.80

Note. COSMIC= Constellation Observing System forMeteorology, Ionosphere, and Climate; SSMIS = Special Sensor Microwave Imager Sounder; HIRS =High‐
resolution Infrared Radiation Sounder; RMS = root‐mean‐square.
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wetter regions. In other words, the interpolated TPW from COSMIC will inevitably have this drier‐region
biased sampling. But in general, the bias and RMS error from COSMIC in different latitudinal zone are
smaller than 2 mm. The sampling errors from SSMIS are very small with the largest bias value of 0.3 mm
and RMS error of 0.35 mm existing in north subtropical regions where both satellite swath gaps and high
TPW variability exist. Though SSMIS shows a highly stable and accurate result, it is limited to ocean and
obviously fall short when it comes to global study both over land and ocean.

There are some more interesting results in HIRS sampling. As mentioned before, there are more IR samples
over drier and descending areas (Figures 3e and 3g), so it is reasonable that dry biases in all three latitudinal
zones are observed. However, both COSMIC and HIRS have inherent drier biased sampling globally. In par-
ticular, COSMIC has much smaller sampling numbers (~25 observations in one 2.5° × 2.5° grid) than HIRS
(more than 40 observations inmost 0.5° × 0.5° grids), which can be seen from Figure 3. But the bias and RMS
error in COSMIC in tropical regions which is −1.89 and 1.96 mm, respectively, are both smaller than that
found in HIRS, namely, −5.07 and 5.12 mm, respectively. The situation is also similar in north subtropical
areas. The bias is −0.74 mm and the RMS error is 0.78 mm in COSMIC, compared with −2.79 and 2.80 mm
in HIRS. In addition, there are fewer samples in HIRS in south subtropical zone, but the bias and RMS error
are still smaller than those in north subtropical region where more samples exist. As mentioned before,
COSMIC and HIRS both provide data over land and ocean. However, COSMIC can provide all‐sky observa-
tions, whereas TPW in HIRS is highly influenced by clouds and is usually limited to clear sky only condi-
tions. Therefore, the meteorological conditions may contribute to this issue. In tropical area, there are
some convectively active regions which have more precipitation and clouds with high TPW values.
Failing to detect the high TPW values in these areas creates large sampling errors in HIRS. To address the
difference in subtropical regions, the TPW variability is further explored in the following section.

3.4. Dependence of Sampling Errors on TPW Variability

Figure 5 shows the distribution of the STD of monthly mean TPW from all original ERA5 data. High vari-
abilities in TPW are found in monsoon regions and the latitudes of ITCZ tracks, whereas the small variabil-
ities are in south subtropical regions. Since the STD is calculated frommonthly mean TPW, it can reflect the
seasonal changes of TPW. The monsoon area provides a typical example. In summer, the moist air from the
southwest Indian Ocean and Bay of Bengal will cause torrential rainfall with cloudy‐weather conditions,
whereas in winter, cold and dry air from northwest Siberia and Mongolia will bring drier weather, which
is usually associated with clear sky conditions. These distinct changes will cause the higher variability of

Figure 5. Standard deviation of monthly mean total precipitable water (TPW; mm) derived from ERA5 reanalysis during
the study period (the year from 2007 to 2013).
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TPW. At the same time, the clear‐sky sampling in HIRS will introduce more errors by losing most of the
samples with higher TPW values in cloudy skies in summer.

A correlation analysis between sampling errors and the STD of TPW is conducted for HIRS and COSMIC in
all grid points in north subtropical regions. The results are in Figure 6. There is a significant correlation
between sampling errors of HIRS and the standard deviation of TPW in north subtropical regions. The cor-
relation coefficient R is −0.352 with a p value equal to 0. Whereas for COSMIC (Figure 6b), the correlation
(with a R value of 0.025) between these two variables is not statistically significant with a p value of 0.310,
which is larger than the 0.05 significance level. These results show that larger variability of TPW gives the
potential for larger HIRS sampling errors, whereas all‐sky sampling has less potential to be influenced by
TPW variabilities. A similar analysis is also conducted in tropical regions (not shown here). The correlation
in HIRS becomes weaker (the R value is −0.072) but still significant (p value equals to 0) compared to that
from COSMIC (a R value of 0.032 with a p value of 0.063). This indicates that although we can see some sea-
sonal changes in the distribution of HIRS sampling and sampling errors related with the movement of ITCZ
(Figures 3e–3h), the dependency of sampling errors on TPW seasonal changes in tropical regions is not very
clear. This result is also shown in the tropical averaged time series in Figure 4e (shown by the red lines),
which is consistent with the result in John et al. (2011). In conclusion, even though HIRS data have more
samples than COSMIC in tropical and north subtropical regions, they are mostly clear‐sky biased thus lead-
ing to a larger deviation with reference data set ERA5. Whereas in south subtropical region, TPW have small
variabilities (Figure 5), which means the TPW values in clear and cloudy skies are similar. Therefore, HIRS
will have small sampling errors, which are−0.64 mm for bias and 0.79 mm for RMS error, respectively. Also,
they are smaller than those sampling errors in fewer sampled COSMIC data set, which are−1.04 mm for bias
and 1.11 mm for RMS error, respectively.

4. Discussions

In previous sections, the characteristics of sampling errors in COSMIC, SSMIS, and HIRS are quantified.
Each of them has its strengths and limitations. It would be interesting to see if there is a method to alleviate
their limitations due to inherent sampling. Tomita and Kubota (2011) assessed the efficiency of using multi-
microwave sensors to reduce the sampling error caused by Sun‐synchronous polar orbit satellites. They cal-
culated the single‐sampled and multisampled values of the wind speed or surface specific humidity obtained
from buoy data. The multisampled values are constructed by averaging certain satellite sampled values with
different combinations of microwave satellite sampling.

Based on their study, in order to further study the sampling impact on TPW analysis, the global monthly
mean TPW is calculated by simply averaging multisensor sampled ERA5 data from different

Figure 6. Scatter density plots showing the correlation between the total precipitable water (TPW; mm) variability and
sampling errors (mm) from (a) High‐resolution Infrared Radiation Sounder (HIRS) and (b) Constellation Observing
System for Meteorology, Ionosphere, and Climate (COSMIC) in latitudes between 30°N to 60°N. The “corr” represents the
correlation coefficient R and “pval” is the probability for significance testing.
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combinations of COSMIC, SSMIS, and HIRS sampling, after that the RMS values of all single‐sampled
and multisampled results are investigated to see if there is any improvement by this combination.
Figure 7a shows the RMS errors, when the reference ERA5 data are compared with the subsampled
ERA5 values derived from single and multisatellite samplings. Figure 7b shows the global monthly
mean TPW time series similar to Figure 2b but includes one more subsampled ERA5 data sets derived
from all three satellite samplings. It should be noted again that the data used here is ERA5 data with
satellite samplings rather than real satellite data.

In Figure 7a, all global ERA5 data are used as the reference. The larger RMS errors are found in sparse
sampled COSMIC sampling (which is 3.03 mm) and in ocean only SSMIS data (with a value of 3.04 mm),
whereas the minimum RMS error (about 1.51 mm) from single sampling pattern is found in clear‐sky
HIRS sampling. This result seems to be contradictory to the result in sections 3.3 and 3.4 where we show
that the HIRS has largest sampling errors in tropical and north subtropical areas. Actually, although
COSMIC sampling is good in each latitudinal zone, the fraction of data in higher latitudes (around
60°S/N) accounts for about 70% of all available samples in COSMIC, whereas the fraction of data is
44% for tropical regions and 34% for subtropical regions in HIRS. Thus, when it comes to the calculation
of global scale TPW, the higher‐latitude biased sampling in COSMIC will lead to a larger RMS error com-
pared with that from HIRS. Figure 7a also shows that RMS error will reduce if multisamplings are used
compared to the corresponding single sensor sampling. When all three satellite samplings are used, the
minimum RMS error of 0.44 mm will be obtained. The second least RMS error of 0.45 mm is from the
combination of samplings in SSMIS and HIRS. This happened because SSMIS and HIRS have more sam-
ples globally compared with COSMIC, in particular, in tropical regions where large TPW exists.
Moreover, SSMIS can provide samples over all‐sky conditions, which can help to compensate the limita-
tions of clear‐sky only sampling in HIRS.

It is also shown in Figure 7b that multisensor sampled TPW time series is more consistent with the time ser-
ies from reference data sets. This additional study shows that simple averaging of multisampling patterns
from different satellite measurements could reduce sampling errors. However, this method cannot be used
to merge real satellite data or reduce the observation errors in real satellite sensors. Because in addition to
differences in sampling errors, there are also some other differences in real satellite data, like channel to
channel coregistration, detector noises, time inhomogeneity caused by orbit drifting, retrieval algorithm,
cloud detecting scheme, calibration, intercalibration in radiance level, and so on (Kidder & Jones, 2007;
Mears et al., 2018; Schröder et al., 2016). Therefore, more sophisticated methodologies, such as the work
of combining infrared and microwave measurements in Li et al. (2000), imaging and sounding (Li et al.,

Figure 7. (a) Root‐mean‐square (RMS) errors (mm) of total precipitable water (TPW) monthly mean between reference values and satellite‐sampled values from
ERA5 in each single and multisampling pattern. Multisampling results are highlighted by red stars. (b) TPW time series similar to Figure 2b, but with one
more time series indicated by red dashed line, representing the TPW values subsampled from ERA5 data with all three satellite samplings.
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2005; Li & Han, 2017), and so on, should be developed and used to fuse the multisource data for a consistent
water vapor climate data record.

5. Summary and Conclusions

Satellite data are important and independent data records for global water vapor studies. Different remote
sensing systems have different inherent sampling errors. In this paper, we analyzed sampling errors from
three typical satellite remote sensing systems at the same time period. The three satellite observations are
GPS RO data in COSMIC, microwave measurements from SSMIS and IR observations from HIRS. The
ERA5 reanalysis data are used as the reference data set and are collocated with satellite observations in time
and space to get the subsampled ERA5 data with the actual samplings from satellites. The difference
between monthly mean TPW from satellite‐sampled ERA5 reanalysis and the original ERA5 reanalysis is
defined as sampling errors of satellite data. All further studies are based on this concept. The ERA5
reanalysis is chosen as the reference not because it has good performance in general but mainly because it
can provide data with global coverage at high temporal and spatial resolutions. Thus, it is adequate to be
subsampled by different satellite data without introducing more uncertainties from data collocation.

All TPWdata used in this study are first compared with ground‐based observations fromARMMWR sites. In
general, satellite observations and ERA5 reanalysis data are in good agreement with the independent mea-
surements from ARM sites, with all linear regression coefficients being more than 0.77. Nevertheless, some
uncertainties remain in satellite data and reanalysis data. However, it is shown that sampling differences in
COSMIC, SSMIS, and HIRS observations largely explain observed differences between associated monthly
mean TPW time series.

Then the sampling patterns and sampling errors of each satellite measurements are analyzed. COSMIC sam-
plings are biased towardmiddle and high latitudes (around 60°S/N). There is a lack of TPW values in tropical
regions due to superrefraction in boundary layer. In general, the sparse and limited samplings in COSMIC
make the distribution of sampling errors disordered. Samples in SSMIS are more uniform with small sam-
pling errors over the ocean. There are some smaller number of samples within 30°S to 30°N due to the orbital
swaths and very heavy rain. However, one obvious limitation of SSMIS sampling is that there is no informa-
tion over land because microwave measurement is highly influenced by the complicated land surface
emissivity. For the IR sampling in HIRS, it is more dependent on weather conditions and is good only in
dry descending regions where the cloud influence is small. In general, the dry bias is spread globally.

Since the distribution of satellite samples seems to be dependent on locations, the statistical characteristics of
sampling errors are further analyzed in different latitudinal zones from 60°S to 60°N. Bias and RMS error are
used to determine the sampling errors in each satellite sampling. COSMIC shows drier bias in all latitudinal
zones, especially in tropical regions. Because lowest penetrating height is more often in drier regions. But all
bias and RMS error are smaller than 2 mm especially in higher latitudes. Sampling errors in SSMIS are smal-
ler than 0.5 mm in all study areas with the largest one in north subtropical regions where sampling number
is relatively small and high TPW variability exists. HIRS and COSMIC both have observations over land and
ocean. But the IR sampling is more influenced by meteorological situations. Therefore, even though HIRS
has more samplings than COSMIC, it has larger sampling errors in cloudy and rainy tropics. In addition,
sampling errors in HIRS are significantly correlated with the variability of TPW, whereas all‐sky sampled
COSMIC results are less influenced. Higher variability of TPW can possibly cause larger sampling errors
in HIRS by removing the number of samplings with high TPW values. This causes a larger discrepancy in
HIRS data. But when it comes to global monthly mean TPW, because COSMIC is highly biased in higher
latitudes (accounts for 70% of all available samples) where TPW is smaller than that in tropical regions,
the large RMS error in COSMIC sampling will come out. Therefore, different satellite sampling has different
limitations and strengths, which should be taken into account when applying the satellite data for
climate studies.

In addition, an attempt is made to show the effectiveness of multisensor sampling on estimations of monthly
mean TPW time series. The minimum RMS error comes from the combination of samplings from all three
satellite measurements. The corresponding TPW time series also shows better agreement with that from the
reference data sets. Actually, it remains a big challenge when it comes to the real satellite data merging, espe-
cially data from different sensors. This additional study shown here is not a feasible way to merge different
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satellite data but just to show that sampling errors can be reduced simply by usingmore samplings frommul-
tisatellite measurements. In other words, if the real multisensor data can be merged adequately, combina-
tions of their samplings will contribute to a more accurate estimation of TPW.

In conclusion, the satellite water vapor observations are typically inhomogeneous and sampling biased.
Sampling differences in COSMIC, SSMIS, and HIRS observations largely explain observed differences
between associated TPW time series. So it is important to take the satellite sampling into account before
using satellite observations to study global TPW variation. Moreover, this preliminary work may motivate
future work to reduce the sampling errors in satellite data and lead to the study on data fusion with multi-
satellite instruments for a more reliable and consistent water vapor climate data record.
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